Ça Se Passe Là-Haut

Ça Se Passe Là-Haut

L'infini se contemple indéfiniment.

Eric Simon

Astronomie, astrophysique, cosmologie, astroparticules...

En cours de lecture

#1525 : Des étoiles sombres énergisées par la matière noire détectées par le télescope Webb ?

En 2007, Katherine Freese (université du Texas) et ses collaborateurs de l’époque avaient proposé le concept d’ « étoiles sombres » (dark stars), qui auraient pu être la première phase de l'évolution stellaire dans l'histoire de l'univers, des « étoiles » alimentées par le chauffage induit par la matière noire plutôt que par la fusion nucléaire. Freese et d’autres collaborateurs montrent aujourd’hui que trois objets lointains vus par le télescope Webb pourraient ne pas être des galaxies, mais ce nouveau type d’objets… Ils publient leur étude dans Proceedings of the National Academy of Sciences.

En cours de lecture

#1523 : Les anomalies du fond diffus cosmologique expliquées par un effet d'avant plan galactique

C'est une découverte potentiellement très importante qui vient d'être publiée dans Astronomy&Astrophysics. Au bon moment pour nous, juste avant de prendre une pause de quelques semaines... Des chercheurs norvégien et argentins ont découvert l'existence d'un effet jusqu'alors inconnu autour de grandes galaxies proches sur les photons du fond diffus cosmologique (le CMB). Cet effet d'avant plan produit un refroidissement local du CMB, et expliquerait de nombreuses anomalies qui sont observées aujourd'hui dans le CMB, dont le fameux "cold spot", et cela pourrait avoir aussi un effet sur les paramètres du modèle cosmologique qui sont déduits des fluctuations du CMB...

En cours de lecture

#1522 : IceCube détecte les neutrinos de la Voie Lactée

La semaine dernière, la collaboration IceCube a publié des nouveaux résultats de détection de neutrinos astrophysiques, une publication annoncée bien en avance avec conférence de presse et tout le tintouin. Alors que je m’attendais à l’annonce de la découverte de nouvelles sources de neutrinos astrophysiques clairement identifiées, comme par exemple des galaxies de Seyfert, quelle ne fut pas ma surprise (et ma petite déception) en découvrant qu’il s’agissait en fait de la découverte de l’émission de neutrinos de notre propre galaxie, et plus exactement de son disque. Cette découverte est parue dans Science et mérite tout de même qu’on s’y arrête un instant.

En cours de lecture

#1521 : La dilatation temporelle liée à l'expansion observée dans des quasars à haut redshift

Un objet qui est situé dans l’univers indiquant un décalage vers le rouge (redshift) noté z, voit sa lumière décalée d’un facteur relatif z=Δλ/λ Mais cela dit aussi que les longueurs d’ondes de sa lumière sont étirées d’un facteur (z+1) et que la source en question se trouve dans un univers qui est (z+1) fois plus petit que l’univers dans lequel nous vivons aujourd’hui. Et la cosmologie relativiste nous dit aussi que cet objet qui est observé avec le redshift z doit montrer une dilatation temporelle d’un facteur (z+1) par rapport à nous : le temps doit s’y écouler (z+1) fois moins vite pour les observateurs que nous sommes. Cet effet peut théoriquement être observable sur des objets qui sont naturellement variables où qui évoluent rapidement. Il a déjà été observé sur des supernovas très éloignées, mais étonnamment, l’observation de l’émission variable de quasars lointains ne semblait pas montrer cette dilatation temporelle cosmologique malgré leurs redshifts souvent très élevé. Et bien c’est désormais chose faite ! Deux astrophysiciens, australien et néo-zélandais viennent de démontrer cet effet de dilatation temporelle dans des quasars à haut décalage vers le rouge grâce à une étude statistique de leur luminosité variable. Ils publient leur étude dans Nature Astronomy.